Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
Objective: Imbalances of the electrolyte concentration levels in the body can lead to catastrophic consequences, but accurate and accessible measurements could improve patient outcomes. While blood tests provide accurate measurements, they are invasive and the laboratory analysis can be slow or inaccessible. In contrast, an electrocardiogram (ECG) is a widely adopted tool which is quick and simple to acquire. However, the problem of estimating continuous electrolyte concentrations directly from ECGs is not well-studied. We therefore investigate if regression methods can be used for accurate ECG-based prediction of electrolyte concentrations. Methods: We explore the use of deep neural networks (DNNs) for this task. We analyze the regression performance across four electrolytes, utilizing a novel dataset containing over 290000 ECGs. For improved understanding, we also study the full spectrum from continuous predictions to binary classification of extreme concentration levels. To enhance clinical usefulness, we finally extend to a probabilistic regression approach and evaluate different uncertainty estimates. Results: We find that the performance varies significantly between different electrolytes, which is clinically justified in the interplay of electrolytes and their manifestation in the ECG. We also compare the regression accuracy with that of traditional machine learning models, demonstrating superior performance of DNNs. Conclusion: Discretization can lead to good classification performance, but does not help solve the original problem of predicting continuous concentration levels. While probabilistic regression demonstrates potential practical usefulness, the uncertainty estimates are not particularly well-calibrated. Significance: Our study is a first step towards accurate and reliable ECG-based prediction of electrolyte concentration levels.
translated by 谷歌翻译
Temporal action segmentation tags action labels for every frame in an input untrimmed video containing multiple actions in a sequence. For the task of temporal action segmentation, we propose an encoder-decoder-style architecture named C2F-TCN featuring a "coarse-to-fine" ensemble of decoder outputs. The C2F-TCN framework is enhanced with a novel model agnostic temporal feature augmentation strategy formed by the computationally inexpensive strategy of the stochastic max-pooling of segments. It produces more accurate and well-calibrated supervised results on three benchmark action segmentation datasets. We show that the architecture is flexible for both supervised and representation learning. In line with this, we present a novel unsupervised way to learn frame-wise representation from C2F-TCN. Our unsupervised learning approach hinges on the clustering capabilities of the input features and the formation of multi-resolution features from the decoder's implicit structure. Further, we provide the first semi-supervised temporal action segmentation results by merging representation learning with conventional supervised learning. Our semi-supervised learning scheme, called ``Iterative-Contrastive-Classify (ICC)'', progressively improves in performance with more labeled data. The ICC semi-supervised learning in C2F-TCN, with 40% labeled videos, performs similar to fully supervised counterparts.
translated by 谷歌翻译
We propose Panoptic Lifting, a novel approach for learning panoptic 3D volumetric representations from images of in-the-wild scenes. Once trained, our model can render color images together with 3D-consistent panoptic segmentation from novel viewpoints. Unlike existing approaches which use 3D input directly or indirectly, our method requires only machine-generated 2D panoptic segmentation masks inferred from a pre-trained network. Our core contribution is a panoptic lifting scheme based on a neural field representation that generates a unified and multi-view consistent, 3D panoptic representation of the scene. To account for inconsistencies of 2D instance identifiers across views, we solve a linear assignment with a cost based on the model's current predictions and the machine-generated segmentation masks, thus enabling us to lift 2D instances to 3D in a consistent way. We further propose and ablate contributions that make our method more robust to noisy, machine-generated labels, including test-time augmentations for confidence estimates, segment consistency loss, bounded segmentation fields, and gradient stopping. Experimental results validate our approach on the challenging Hypersim, Replica, and ScanNet datasets, improving by 8.4, 13.8, and 10.6% in scene-level PQ over state of the art.
translated by 谷歌翻译
In this paper we propose a pooling approach for convolutional information processing on graphs relying on the theory of graphons and limits of dense graph sequences. We present three methods that exploit the induced graphon representation of graphs and graph signals on partitions of [0, 1]2 in the graphon space. As a result we derive low dimensional representations of the convolutional operators, while a dimensionality reduction of the signals is achieved by simple local interpolation of functions in L2([0, 1]). We prove that those low dimensional representations constitute a convergent sequence of graphs and graph signals, respectively. The methods proposed and the theoretical guarantees that we provide show that the reduced graphs and signals inherit spectral-structural properties of the original quantities. We evaluate our approach with a set of numerical experiments performed on graph neural networks (GNNs) that rely on graphon pooling. We observe that graphon pooling performs significantly better than other approaches proposed in the literature when dimensionality reduction ratios between layers are large. We also observe that when graphon pooling is used we have, in general, less overfitting and lower computational cost.
translated by 谷歌翻译
The proliferation of radical online communities and their violent offshoots has sparked great societal concern. However, the current practice of banning such communities from mainstream platforms has unintended consequences: (I) the further radicalization of their members in fringe platforms where they migrate; and (ii) the spillover of harmful content from fringe back onto mainstream platforms. Here, in a large observational study on two banned subreddits, r/The\_Donald and r/fatpeoplehate, we examine how factors associated with the RECRO radicalization framework relate to users' migration decisions. Specifically, we quantify how these factors affect users' decisions to post on fringe platforms and, for those who do, whether they continue posting on the mainstream platform. Our results show that individual-level factors, those relating to the behavior of users, are associated with the decision to post on the fringe platform. Whereas social-level factors, users' connection with the radical community, only affect the propensity to be coactive on both platforms. Overall, our findings pave the way for evidence-based moderation policies, as the decisions to migrate and remain coactive amplify unintended consequences of community bans.
translated by 谷歌翻译
Changing how pre-trained models behave -- e.g., improving their performance on a downstream task or mitigating biases learned during pre-training -- is a common practice when developing machine learning systems. In this work, we propose a new paradigm for steering the behavior of neural networks, centered around \textit{task vectors}. A task vector specifies a direction in the weight space of a pre-trained model, such that movement in that direction improves performance on the task. We build task vectors by subtracting the weights of a pre-trained model from the weights of the same model after fine-tuning on a task. We show that these task vectors can be modified and combined together through arithmetic operations such as negation and addition, and the behavior of the resulting model is steered accordingly. Negating a task vector decreases performance on the target task, with little change in model behavior on control tasks. Moreover, adding task vectors together can improve performance on multiple tasks at once. Finally, when tasks are linked by an analogy relationship of the form ``A is to B as C is to D", combining task vectors from three of the tasks can improve performance on the fourth, even when no data from the fourth task is used for training. Overall, our experiments with several models, modalities and tasks show that task arithmetic is a simple, efficient and effective way of editing models.
translated by 谷歌翻译
Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in a case study that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of 7 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets.
translated by 谷歌翻译